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The quantification of physical properties of biological matter gives rise to novel ways of under-
standing functional mechanisms by utilizing models that explicitly depend on physical observables.
One of the basic biophysical properties is the mass density (MD), which determines the degree of
crowdedness. It impacts the dynamics in sub-cellular compartments and further plays a major role
in defining the opto-acoustical properties of cells and tissues. As such, the MD can be connected to
the refractive index (RI) via the well known Lorentz-Lorenz relation, which takes into account the
polarizability of matter. However, computing the MD based on RI measurements poses a challenge
as it requires detailed knowledge of the biochemical composition of the sample. Here we propose
a methodology on how to account for a priori and a posteriori assumptions about the biochemical
composition of the sample as well as respective RI measurements. To that aim, we employ the Biot
mixing rule of RIs alongside the assumption of volume additivity to find an approximate relation
of MD and RI. We use Monte-Carlo simulations as well as Gaussian propagation of uncertainty to
obtain approximate analytical solutions for the respective uncertainties of MD and RI. We validate
this approach by applying it to a set of well characterized complex mixtures given by bovine milk
and intralipid emulsion. Further, we employ it to estimate the mass density of trunk tissue of living
zebrafish (Danio rerio) larvae. Our results enable quantifying changes of mass density estimates
based on variations in the a priori assumptions. This illustrates the importance of implementing this
methodology not only for MD estimations but for many other related biophysical problems, such as
mechanical measurements using Brillouin microscopy and transient optical coherence elastography.

Keywords: Mass density, Refractive index, Optical diffraction tomography, Brillouin microscopy, Optical
coherence elastography

I. INTRODUCTION

Quantifying the physical properties of biological mat-
ter has become increasingly important over recent
decades. By now, the notion that biological function of
cells and tissues is affected by their physical phenotype
and vice versa has been validated in many experimental
studies (see e.g., [1–3]). A fundamental property of mat-
ter, including living matter, is the mass density (MD) [4],
which is not only associated with buoyancy, crowdedness
[5], biomolecular condensation [6] and inherent dynam-
ical processes of the sample of interest [7, 8], but also
plays a major role in elastography, particularly Brillouin
microscopy [9–12] and transient optical coherence elas-
tography (see e.g., [13, 14]). However, measuring the in
vivo MD distribution in a direct manner poses a chal-
lenge which has not been resolved so far. One way of
inferring the in vivo MD of a sample is to measure the
refractive index (RI) via microscopy techniques such as
optical diffraction tomography (ODT) [15]. The Lorentz-
Lorenz relation then connects the RI with the mass den-
sity if the molar refractivity and partial specific volume
(PSV) of the dry mass composition as well as the solvent
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content are known. This knowledge, however, is not triv-
ially obtainable. A customary assumption regarding bi-
ological matter is that the dry mass composition is given
by proteins only [15–17] and that the solvent content is
then indirectly constrained by the measured RI. While
this approximation holds for binary polymer-solutions,
it cannot be directly extended to samples with a ’com-
plex dry mass composition’. In the context of cells and
tissues, the dry mass composition may be thought of as
a mixture of (phase separated) proteins, lipids, sugars,
etc. [18]. By employing e.g., mass spectrometry (MS)
and/or (stimulated) Raman spectroscopy (SRS), individ-
ual components and their respective concentrations in
the sample can be identified [19–21]. Additionally, cor-
relative fluorescence information could be employed to
segment RI maps acquired by ODT [12, 22]. However,
these experimental modalities might not be available or
applicable for certain samples, which creates a degree of
ignorance about the dry mass composition which should
be accounted for in the inference process of obtaining
an MD estimate. Another, closely related aspect is the
robust estimation of the uncertainty of the MD. Con-
sidering the previously mentioned degree of ignorance,
these uncertainties are clearly not only of statistical but
also of systematic nature. And further, even if univer-
sal knowledge about the true distributions of the molar
refractivity and PSV was available, in order to estimate
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the uncertainty of the MD adequately, the uncertainties
of the individual parameters should be propagated.

Here we present a robust methodology for estimating
the uncertainties of the MD and the correlative RI by em-
ploying Monte-Carlo (MC) simulations. Furthermore, we
provide analytical approximations for both the MD and
RI distributions in dependence of the dry mass composi-
tion and the solvent content, employing Gaussian prop-
agation of uncertainty (GPU).

To this end, we first motivate a simple mixture model
to estimate the MD and the RI from two material con-
stants, namely the RI increment α and the PSV θ. We
then extend the model towards unimodal distributions
of α and θ, for which previously only precise values were
assumed.

The distributions of the RI increment and PSV are re-
markably narrow, when only considering proteins in the
mixture [23], resulting in sharp distributions of RI and
MD. However, taking a second type of molecule, such as
lipids or sugars, into account adds an additional com-
plexity to the MD estimations since their values of RI
increment and PSV differ drastically from those of pro-
teins. Therefore, we derive an effective description of the
system based on weighted mixture distributions. This
allows for a correlative prediction of the RI and the MD,
accounting e.g., for the lipid and water content of the
sample as well as for fluctuations in both quantities. We
then apply this approach to 1) bovine milk, a well charac-
terized mixture of water, proteins and lipids and 2) 20%
intralipid emulsion, which mainly consists of water and
soybean oil. Comparing the measured values of the MD
and RI acquired by pycnometry and Abbe refractometry,
respectively, with our theoretical estimates, we find both
to be in good agreement with each other.

After demonstrating the applicability of our method
on bovine milk and intralipid emulsion, we explore the
MD distribution of larval zebrafish trunk, compromising
major tissue including muscle, spinal cord etc., employ-
ing the recent RI and MS measurements of [19]. This
purely optical and computational approach shows how
the MD can be estimated also in complex in vivo spec-
imens, enabling a more profound interpretation of me-
chanical measurements.

II. A BINARY MIXTURE MODEL FOR MASS
DENSITY ESTIMATIONS

Considering a mixture of some molecule (i.e. solute
content) in a solvent, the total mass m and volume v of
the solution follow the form

m = m1 +m2,

v = v1 +m2θ̃,
(1)

where index 1 denotes the solvent, index 2 denotes the
solute and θ̃ denotes the so called apparent specific vol-
ume of the solute (ASV), which describes the volume per

gram of the solute in solution. As such, the ASV may be
dependent on the mass of the solute m2, since it accounts
for solute-solute interactions under constant temperature
T , pressure p and solvent mass m1. The change of the
total volume of the solution v with respect to a change in
the mass of the solute is then characterized by the partial
specific volume (PSV) via

θ ≡
(

∂v

∂m2

)
T,p,m1

= θ̃ +m2

(
∂θ̃

∂m2

)
T,p,m1

, (2)

as motivated in [24].
For the sake of simplicity, for all the following consid-

erations, we employ the concept of volume additivity, for
which it is straightforward to show that θ = θ̃ = 1/ρ2,
where ρ2 is the solute density (see SI; Eqs. (S3) [25]).
By denoting the solute concentration as c2 ≡ m2/v and
expressing the mass of the solvent as

m1 = ρ1v (1− c2θ) , (3)

we obtain an expression for the MD of the mixture as

ρ =
m

v
= c2 + ρ1(1− c2θ). (4)

In the next step, we connect the RI of the solution to the
solute concentration c2 via the phenomenological mixing
rule

n = φ1n1 + φ2n2, (5)

with φi = ci/ρi = vi/v being the volume fraction of
component i [26]. In the following, we refer to Eq. (5) as
Biot equation or mixing rule. Note that in a typical ODT
experiment we determine the RI contrast δn ≡ n − n1

which has to fulfill a non-negativity constraint (i.e., δn ≥
0). Evaluating Eq. (5) while assuming volume additivity
[(1− φ2) = φ1], we arrive at

δn

c2
=

n2 − n1

ρ2
= α, (6)

where we identify the customarily designated RI incre-
ment α. Finally, by replacing c2 in Eq. (4) with the
expression given in Eq. (6), we obtain an estimate of the
solution MD in dependence of the RI as

ρ =
δn

α
+ ρ1

(
1− θ

δn

α

)
, (7)

which has been employed in [17], or stated equivalently in
[27, 28]. While relations similar to Eq. (7) can be found
for different RI mixing rules (see e.g., [29]), the assump-
tion of volume additivity is central for our considerations.
Eq. (7) is the basis of all following considerations and will
be employed frequently throughout this study.
The first term of Eqs. (7) and (4), respectively, com-

putes the solute concentration and the second term ac-
counts for the MD of the solvent as well as the volume
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uptake of the solute content. In other words, the second
term can be interpreted as the MD contribution of the
solvent content of the sample. In this interpretation, the
PSV, θ, scales the solvent content.

Experimentally, the PSV of a solute is determined by
measuring the density of the solution ρ in dependence of
the solute concentration c2 [24], which can be motivated
by solving Eq. (4) for θ as

θ =
1

ρ1

(
1− ρ− ρ1

c2

)
. (8)

Hence, any experimentally observed deviation from a
constant slope of ρ(c2) can be directly interpreted as a
violation of the volume additivity assumption.

A straightforward and common approach to obtain the
MD of a liquid is given by pycnometry, where the mass
of a precisely fixed volume is measured. The MD is then
simply given by the mass to volume ratio. Further meth-
ods to measure MD are reviewed in [24] and references
therein. Similarly, the RI increment is customarily deter-
mined by measuring the RI of the solution in dependence
of the solute concentration (see Eq. (6)), e.g., by employ-
ing an Abbe refractometer.

In the context of biological matter, one may think
of the ’solute’ as a complex composition of many con-
stituents, which makes the experimental determination
of both, PSV and RI increment for all components and
their combinations practically impossible; the human
proteome alone consists of ∼ 104 proteins [18, 30]. In
order to resolve this problem, at least partially, not ac-
counting for volume inadditivities, a method of determin-
ing the correlative distributions P(α, θ) of the proteomes
of different organisms was introduced and experimentally
validated for two amino acid sequences in [23]. The au-
thors computed the weight averages of the residue refrac-
tivity per gram and according PSV θ of proteins based
on their respective amino acid sequence. The refractiv-
ity per gram Ri of a molecule i is proportional to its
polarizability α̂ and molar mass M as Ri ∼ α̂i/Mi. Fur-
ther, the refractivity per gram can be connected to the
RI and the MD of the solute via the Lorentz-Lorenz (or
Clausius–Mossotti) relation (see e.g., [31]) as

Ri =
1

ρi

n2
i − 1

n2
i + 2

, (9)

which may be solved for the RI of the molecule ni, to
obtain

ni =

√
2Ri + θi
θi −Ri

. (10)

Considering that the PSV of a binary solution is given by
the mass average of the PSVs of the solvent and solute
as

1

ρ
=

m1

m

1

ρ1
+

m2

m

1

ρ2
, (11)

consequently, one could assume that the refraction per
gram of the solution is given by the mass average of the
constituents as well

R =
m1

m
R1 +

m2

m
R2, (12)

as it carries the same unit [ml/g] [32]. By inserting
Eq. (9) into Eq. (12), we obtain the customarily denoted
Lorentz-Lorenz mixing rule of RIs

n2 − 1

n2 + 2
= φ1

n2
1 − 1

n2
2 + 2

+ φ2
n2
2 − 1

n2
2 + 2

. (13)

We note that Eq. (13) could be employed to derive an
expression of the MD in dependence of the RI, similar to
Eq. (7), using the Biot Eq. (5). Furthermore, we want
to stress that neither the Lorentz-Lorenz mixing rule of
RIs (Eq. (13)), nor the Biot mixing rule of RIs (Eq. (5))
do explicitly require volume additivity (see [26, 33] for
further details).
However, assuming dilute solutions (n → n1) as well

as volume additivity, the authors of [23] computed the
RI increment for each protein, denoted by the index p,
as derived in [26], as

αW
p ≃ 3

2
θpn1

n2
p − n2

1

n2
p + 2n2

1

, (14)

by employing the Wiener mixing rule of RIs

n2 − n2
1

n2 + 2n2
1

= φ2

n2
p − n2

1

n2
p + 2n2

1

, (15)

and Eq. (10) to compute the RI of each protein np from
the mass averaged refractions per gram and PSVs of the
respective amino acid sequences, as described earlier. Re-
peating this procedure for all proteins presumed to be
abundant in the different organisms under study, they
obtained the bivariate distribution of RI increment and
PSV. Zhao et al. [23] then fitted normal distributions
to the univariate histograms to obtain the means and
standard deviations for different organisms, of which we
depicted two in Tab. I. We repeated the computations
presented in [23] (see SI [25]) for the updated human and
zebrafish proteomes obtained from [30]. Besides comput-
ing the RI increment from the Wiener relation for dilute
solutions (Eq. (14)), we also employed the Biot Eq. (5)
in combination with the volume additivity assumption
to obtain an expression of the RI increment as given in
Eq. (6)

αB
p = θp (np − n1) . (16)

Furthermore, different to [23], we employed the con-
sensus averages for the amino acid residue molecular vol-
umes of [34]. The full list of parameters employed here is
given in Tab. SII [25]. The resulting bivariate distribu-
tions P(α, θ) are given in Fig. 1. The corresponding mean
values and standard deviations of the fits of the univari-
ate histograms with a normal distribution are given in
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Tab. I. Evidently, the PSV and RI increment values ob-
tained here coincide very well, with the values from [23].
However, since our values were computed using the con-
sensus values of the molar residue volumes of the amino
acids of [34] instead of the ones of Cohn and Edsall [35],
they are systematically lower. Furthermore, the RI incre-
ments obtained using Eq. (16) are systematically higher
than the ones obtained from the Wiener equation for di-
lute solutions, given in Eq. (14).

While it is not clear why the calculations proposed in
Zhao et al. [23] result in distributions P(α, θ) that resem-
ble uncorrelated bivariate normal distributions for the
proteomes of different species, they facilitate the idea of
taking the whole distribution P(α, θ) into account when
estimating the MD via Eq. (7). Consistently, in order to
obtain a reliable estimate of the MD distribution, a pre-
cise characterization of the solute composition is needed.

To our knowledge, the justification for or against the
assumption of volume additivity in complex biological
matter is yet to be given (experimentally). However, we
may interpret Eq. (2) in first order approximation as

θ ≈ θ̃ ± ϑ, (17)

where any potential deviation from the volume additiv-
ity ϑ could be treated as an additional factor that will
also contribute to the uncertainty of the RI and MD es-
timates.

In the following, we construct and employ a theoretical
framework in which the information of the solute compo-
sition is incorporated into the prediction of the MD. For
that purpose, we employ the Biot Eq. (5) for the majority
of our further considerations and denote α = αB.

III. EXTENSION OF THE BINARY MIXTURE
MODEL

As motivated earlier, when dealing with biological mat-
ter, the complexity of the solute composition should be
taken into account in order to obtain reliable estimates
of the MD. To that aim, we first extend the expression
of the MD of the binary mixture (Eq. (7)) to the case of
different solute constituents, e.g., proteins of the human
proteome, lipids and sugars, being dissolved in a solvent
with corresponding RI n1 and MD ρ1.

We describe this problem by discretizing the total sam-
ple volume into Nv voxels with volumes vv

v = Nvvv. (18)

Furthermore, we discretize the voxels into N0 ’voxelinos’
with volumes v0 as

vv = N0v0. (19)

The motivation to divide a voxel into N0 voxelinos is to
obtain small, yet macroscopic, volume fractions with a
constant volume v0 that contain one and only one solu-
tion constituent. Hence, each voxelino can be either a

FIG. 1: 1σ (solid) and 2σ (dashed) likelihood contours
of the correlated distributions of RI increment αB

p in
ml/g and PSV θp in ml/g, for the human proteome;
82127 proteins (blue), and the zebrafish proteome;
46517 proteins (red).

solvent voxelino, or a solute voxelino and is inherently
characterized by its respective partial specific volume θi
and refraction per gram Ri, i.e., its MD and RI. The
number of solvent voxelinos in the voxel, N1, is given by
N1 = N0 −Ns, where Ns is the number of solute voxeli-
nos. Accordingly, the solvent volume fraction of a voxel
is given by

φ1 ≡ 1− Ns

N0
. (20)

Accounting for multiple types of solute molecules, e.g.,
proteins, lipids, sugars, etc., being present in the solution,
we choose the PSVs and refractions per gram of the solute
voxelinos θi+1 and Ri+1 to be random values, drawn from
a weighted mixture distribution

Pmix(R, θ) =
∑
j

xjPj(R, θ), (21)

where j denotes the solute constituents. Further, the
Pj(R, θ) represent the bivariate probability distributions
of the refraction per gram and PSV of the respective
constituents and the associated weights xj are given by
the relative volume fractions as

xj =
vj
vs

=
Nj

Ns
, (22)

where vs denotes the total solute volume. We note that
Eq. (21) should be seen as a way of denoting that Nj

out of Ns solute voxelinos of constituent j are present
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TABLE I: Mean and standard deviations of the RI increments αi
p and partial specific volumes θp distributions based

on amino acid sequences of the proteome of the human and the zebrafish and the trunk tissue of the larval zebrafish
at 96 hpf. The calculation of αB

p employed the Biot equation given in Eq. (5), while αW
p was derived from the dilute

limit of the Wiener mixing rule of refractive indices (Eq. (14)).

αW
p in ml/g ∆αW

p in ml/g αB
p in ml/g ∆αB

p in ml/g θp in ml/g ∆θp in ml/g

Human

Proteomea 0.1899 0.0030 N/A N/A 0.735 0.010
Proteomeb 0.188 0.004 0.196 0.004 0.734 0.012

Zebrafish

Proteomea 0.1904 0.0030 N/A N/A 0.735 0.010
Proteomeb 0.1887 0.0031 0.1968 0.0034 0.732 0.010
trunk tissueb 0.1883 0.0029 0.1963 0.0032 0.734 0.009

a [23]
b this work

in a voxel. Consequently, Nj solute voxelinos have the
RI nj and MD ρj and we have that Ns =

∑
j Nj , i.e.,∑

j xj = 1.

Employing Eqs. (4) and (5), we readily obtain the re-
lation between the MD ρ and the RI n of one voxel

ρ =

Ns∑
i=1

ci+1 + ρ1

(
1−

Ns∑
i=1

θi+1ci+1

)

≡ δn

αeff
+ ρ1

(
1− θeff

δn

αeff

)
,

(23)

where we defined the effective RI increment αeff and PSV
θeff. The RI of the solution n is then given by the Biot
Eq. (5), where the RIs of the individual solute voxelinos
ni+1 could be known directly from RI measurements, or
may be computed by employing the Lorentz-Lorenz re-
lation, given in Eq. (10).

It can be shown (see SI; Eqs. (S17) and (S18) [25])
that the effective parameters may be expressed by the
mass averages of the respective parameters of the solute
voxelinos as

θeff =

Ns∑
i=1

(
xi+1

θi+1

)−1

=

Ns∑
i=1

yi+1θi+1, and

αeff = θeff (ns − n1) =

Ns∑
i=1

yi+1αi+1,

(24)

where we denoted the solute concentration and RI by cs
and ns, respectively, and the relative mass fraction of a
solute voxelino by

yi =
mi

ms
, (25)

with ms being the total solute mass. Hence, the effective
parameters absorb the ’complexity’ of the mixture, while
the functional relationship of Eq. (4) is obeyed. With this
at our disposal, we are able to compute the MD ρ and

the corresponding RI n of a voxel, given a distribution
Pmix(R, θ) and a solvent volume fraction of the voxels φ1,
i.e., the ratio Ns/N0. Repeating this procedure for Nv

voxels provides a map of RI values in resemblance of an
ODT measurement, alongside the corresponding MDs.
As the framework introduced above is strongly depen-

dent on a priori assumptions of the individual model pa-
rameters (φ1, xj , αj , θj) for different complex mixtures,
in the next step, we shall discuss the impact of these
assumptions on the uncertainties of the RI and MD pre-
dictions.

IV. UNCERTAINTY QUANTIFICATION OF
THE EXTENDED MODEL

Given access to experimental data, i.e., ODT tomo-
grams of a sample of interest, we may not only compare
the mean values of the measured and predicted RI dis-
tributions, but also their widths. This in turn enables
a more reliable estimate of the MD distribution. Hence,
in the next step we study the dependence of the uncer-
tainty of the MD estimate ρ, defined in Eq. (23), and
the RI n on the sample properties, namely, the solvent
volume fraction φ1, the effective RI increment αeff, the
effective partial specific volume θeff as well as their re-
spective associated uncertainties.
To that aim, we investigate the impact of the pres-

ence of a second type of macro molecule in the mixture
of proteins and water. Since lipids make up for about
13% of the solute mass fraction in mammalian cells [18],
and typically exhibit an MD lower than water, they merit
detailed scrutiny. In the following, we assume that the
lipids are present in the form of lipid droplets and form
an emulsion in the water+protein phase. For the sake
of simplicity, we further assume that the lipid droplets
consist only of the neutral lipid triolein (TO), neglect-
ing sterol esters, triacylglycerols and phospholipids [36–
38]. The corresponding values of the RI, refraction per
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gram, PSV and RI increment of the two types of solute
molecules under investigation are given in Tab. SI [25].

Throughout this study we assume that both RI and
MD of the solvent are precisely known. We further point
out that we implement the values given in Tab. SI [25]
in our calculations as follows: if a quantity is stated as
mean ± standard deviation, we account for it as normally
distributed with respective mean and standard deviation.
For the cases where we could not estimate an uncertainty,
we assume the quantity to be delta distributed.

A. Effective RI increment and PSV

Examining the definitions of αeff and θeff, given in
Eqs. (24), we observe a dependence of both quantities
on the number of solute voxelinos per voxel Ns, given as
the upper limit of the sum. To obtain an intuition about
the implications on the respective uncertainties, we first
consider the case of proteins dissolved in water, which
may be approximated by uncorrelated normal distribu-
tions N (µ, σ) of the RI increment and PSV, as shown in
Fig. 1

αN ∼ N (α,∆α) ,

θN ∼ N
(
θ,∆θ

)
,

(26)

with respective mean values and standard deviations (see
e.g., Tab. I). Applying GPU to Eqs. (24) we have

∆θeff =
∆θ√
Ns

, and

∆αeff =
∆α√
Ns

,

(27)

where we used that the relative mass fraction of each
solute voxelino is given by yi+1 = 1/Ns. The result of
Eq. (27) is in concordance with the central limit theorem
(CLT). In other words, the standard deviation of the ef-
fective distributions corresponds to the ’standard error of
the mean’ of the initial distributions, given that the voxel
contains Ns protein voxelinos. Thus, considering that in
biological matter the number of voxelinos per voxel is
typically larger than ∼ 108 for experimentally accessible
voxel sizes in the order of 1 µm3, the deviations of the
effective RI increment and PSV, for the case of proteins
dissolved in water, are negligibly small.

Next, we study the impact of lipids in the pro-
tein+water mixture. In this scenario, Eq. (21) takes the
form

Pp+lip(R, θ) = (1− xlip)Pp(R, θ)

+ xlipPlip(R, θ).
(28)

Assuming that Pp and Plip follow uncorrelated bivariate
normal distributions, using Eqs. (27), we find that the
distributions of the effective PSV and RI increment follow

normal distributions as

θeff ∼ N
(
θeff,∆θ0eff/

√
Ns

)
, and

αeff ∼ N
(
αeff,∆α0

eff/
√

Ns

)
,

(29)

where the respective mean values of effective PSV and
RI increment are given in Eqs. (24) and the standard de-
viations ∆θ0eff, ∆α0

eff follow the standard deviation of a
mixture distribution, provided in the supplemental infor-
mation (Eq. (S14) [25]).
With this, we further examine the implications of de-

viations of the relative lipid volume fraction ∆xlip from
voxel to voxel. Such deviations may be interpreted as a
form of inhomogeneity of the system, which have been ex-
perimentally quantified in cells and tissues by SRS mea-
surements [20]. Employing GPU we find the following
analytical expression of the deviation of the mean effec-
tive PSV and RI increment with respect to ∆xlip as

∆θeff =

√(
∆θ0eff√
Ns

)2

+

(
∂θeff
∂xlip

∆xlip

)2

, and

∆αeff =

√(
∆α0

eff√
Ns

)2

+

(
∂αeff

∂xlip
∆xlip

)2

.

(30)

The partial derivatives in Eqs. (30) are given in the sup-
plemental information (Eqs. (S19) and (S20) [25]). A vi-
sual depiction of Eqs. (30) in dependence of the number
of voxelinos per voxel N0 = Ns/(1 − φ1) and the corre-
sponding results of MC simulations for certain parameter
configurations is shown in Fig. 2(a).
As becomes apparent, the analytical solution, employ-

ing GPU, is in concordance with the simulated values.
However, we note that this is due to the assumption of
normal distributions for the individual effective RI in-
crements and PSVs. For non-normal distributions, GPU
might not be applicable.
By assuming the mixture distribution, given by

Eq. (28), consequently, the deviations ∆αeff and ∆θeff
are maximized for xlip = 0.5 (see SI [25]). Secondly,
while for non-fluctuating xlip, i.e., ∆xlip = 0, the re-
spective deviations of the effective RI increment and the
PSV exhibit the 1

/√
N0 proportionality, for ∆xlip > 0,

we obtain non-vanishing deviations for a large number of
voxelinos per voxel N0.
Throughout this study we assume that all volume frac-

tions, in particular xlip, follow a normal distribution,
truncated in the domain [0, 1], since values outside of this
interval are non-physical under the assumption of volume
additivity. For a normal distribution with mean µ and
standard deviation σ, the corresponding truncated dis-
tribution is denoted by T (µ, σ). The probability density
function (PDF) of T is defined as

t(y) ≡

{
f(y)

F (1)−F (0) 0 ≤ y ≤ 1

0 else
, (31)
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where f(y) and F (y) denote the PDF and cumulative
distribution function (CDF), respectively, of said nor-
mal distribution N (µ, σ). We note that another choice
of distribution could be given by the beta distribution
B(a, b) with shape parameters a and b, which is inher-
ently bounded between 0 and 1. However, the inter-
pretation of the shape parameters in this context is not
as straightforward as the truncated normal distribution.
Alternatively, a uniform distribution with a certain do-

main
[
xmin
lip , xmax

lip

]
could be employed. For more than

two types of macro molecules, the Dirichlet distribution
could be of use. However, we expect a similar qualitative
behaviour for all mentioned distributions.

B. Solvent volume fraction

Next, we study the uncertainty associated to the sol-
vent volume fraction φ1, defined in Eq. (20), in depen-
dence of the number of solute voxelinos Ns per voxel. By
employing GPU we find

∆φ1 = (1− φ1)
∆Ns

N s

, (32)

where we used the presumption that the number of vox-
elinos per voxel N0 is constant. From Eq. (32) we obtain
that a change in the solvent content from voxel to voxel
is directly proportional to a relative change in the num-
ber of solute voxelinos per voxel ∆Ns/N s. However, it
is not clear whether Ns follows a statistical distribution,
and if so, how this distribution would be governed by
active/passive processes in biological matter. An ingen-
uous guess is given by the equilibrium assumption that
the number of solute voxelinos per voxel Ns is binomially
distributed as

Ns ∼ Bin (N0, (1− φ1)) , (33)

which may be interpreted as finding Ns out of N0 voxeli-
nos in a voxel with a probability of 1−φ1. The according
standard deviation and mean value of Ns is then given
by

∆NBin
s =

√
N

Bin

s φ1, and

N
Bin

s = N0(1− φ1),

(34)

respectively, which is consistent with Eq. (20). Besides
a statistical argument, we may also compute a change
in the number of solute voxelinos from voxel to voxel by
considering

Ns =
vs
v0

=
msθeff
v0

, (35)

from which we have

∆Ns

N s

=

√√√√(∆ms

ms

)2

+

(
∆θeff

θeff

)2

+

(
∆NBin

s

N
Bin

s

)2

, (36)

using the presumption of a constant voxelino volume
∆v0 = 0. Herewith, Eq. (32) may be written as

∆φ1 = (1− φ1)

√
(∆φ0

1)
2
+ (∆φ∞

1 )
2
, (37)

with

∆φ0
1 =

√√√√ 1

N0 (1− φ1)

(
φ1 +

(
∆θ0eff
θeff

)2
)
,

∆φ∞
1 =

√(
∆ms

ms

)2

+

(
∂θeff
∂xlip

∆xlip

θeff

)2

.

(38)

This indicates that, similarly to the effective RI incre-
ment and PSV, given by Eqs. (27), the deviation of the
solvent volume fraction ∆φ1 has two components; for
once ∆φ0

1, which shows the 1/
√
N0 dependence, follow-

ing the CLT. Secondly, ∆φ∞
1 , which connects fluctua-

tions in the solvent volume fraction to fluctuations in the
solute mass and/or fluctuations in the solute composi-
tion. Hence ∆φ∞

1 may be interpreted as quantification
of the degree of inhomogeneity of the sample in the solute
and its composition. Consequently, for a large number
of voxelinos per voxel N0, these inhomogeneities become
the dominant contribution to the deviation of the solvent
volume fraction.
We note that the presumption of a constant voxelino

volume ∆v0 = 0 and a constant number of voxelinos per
voxel ∆N0 = 0 from voxel to voxel is necessitated by the
experimental boundary condition, that all voxels have
the same volume, i.e., ∆vv = 0.

C. Refractive index

Considering the previous derivations of the uncertain-
ties of the effective PSV and RI increment, as well as the
water volume fraction, we now examine the refractive in-
dex of the solution. For that purpose, we rewrite Eq. (5)
as

n = (1− φ1)
αeff

θeff
+ n1. (39)

With this at hand, we readily obtain an estimate of the
uncertainty of n by employing GPU (neglecting potential
correlations) as

∆n =

√√√√∑
i

(
∂n

∂βi
∆βi

)2

, (40)

where the sum is taken over all β = {αeff, θeff, φ1} and the
respective deviations ∆βi are given in Eqs. (30) and (37).
The graphical representation of Eq. (40) in dependence
of N0 is given in Fig. 2(a).
As a consequence we have that for a vanishing rela-

tive deviation of the solute ∆ms/ms, the 1
/√

N0 scaling
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behaviour of the effective RI increment and PSV deter-
mines the scaling behaviour of the deviations in the RI
∆n. However for ∆ms/ms > 0 we obtain a constant devi-
ation of the RI for large N0, consistent with the broad RI
distributions obtained by ODT measurements of different
cells and tissues [12, 15, 19, 39], and fluctuations in the
water volume fraction measured by SRS [20]. Further-
more, while the dependence of ∆n on the mean relative
lipid volume fraction xlip is determined by the deviations
of the effective RI increment and PSV, we observe a van-
ishing impact of the deviation of the relative lipid volume
fraction ∆xlip. This fact is due to the numerically small
differences of the mean refractions per gram of the par-
ticular choice of proteins and the lipid

∣∣Rlip −Rp

∣∣ ≈ 0.05
in combination with larger differences of the mean PSVs∣∣θlip − θp

∣∣ ≈ 0.35 (see SI; Fig. S4 [25]).

D. Mass density

Finally, we investigate the uncertainty associated with
the MD. For convenience, we may express Eq. (23) as

ρ =
(1− φ1)

θeff
+ φ1ρ1, (41)

to obtain the corresponding deviation, employing GPU,
as

∆ρ =

√√√√(θeffρ1 − 1

θeff
∆φ1

)2

+

(
φ1 − 1

θ
2

eff

∆θeff

)2

, (42)

displayed in Fig. 2(a). As discussed for ∆n, the magni-
tude of ∆ρ is impacted by the mean relative lipid fraction
xlip as a consequence of the mixture distribution, given
in Eq. (21). Furthermore, we have a non-vanishing devi-
ation of the MD for ∆ms/ms > 0 and large N0. To no
surprise, we observe a remarkable impact of deviation of
the relative lipid fraction ∆xlip on ∆ρ due to the strong
scaling with the deviation of the effective PSV ∆θeff.

E. Correlation of refractive index and mass density

Having studied the deviations associated with RI and
MD, we next sought to illuminate the correlation between
the distributions of the RI contrast δn, and the MD ρ,
denoted by P(ρ, δn), in dependence of the model param-
eters introduced earlier. To that aim, we performed MC
simulations of Eq. (23) for the case of human proteins
and triolein in water for a range of different mean relative
lipid and water volume fractions, as shown in Fig. 2(b).
Besides the intuitive behaviour of ρ(δn) for the cases of

xlip = 0 (MD increases with increasing refractive index)
and xlip = 1 (MD decreases with increasing refractive
index), for xlip = 0.8 the MD is roughly constant for
all refractive index values. This feature is quite remark-
able since it demonstrates that for certain solute com-
positions, the MD is decoupled from the refractive index

for all possible water volume fractions. Furthermore, as
motivated earlier, and shown in Fig. 2(c), measuring a
refractive index distribution, e.g., via ODT, may corre-
spond to a range of different water and relative lipid vol-
ume fractions, resulting in drastically different estimates
on the distribution of the MD from case to case. This in
turn strongly motivates the necessity for detailed knowl-
edge about not only the solute composition, but also the
solvent content of the sample.
In the light of the theoretical implications delineated

above, in the next step we want to examine the predic-
tive capabilities of the model for a set of physiological
complex mixtures that are well characterized in terms of
their solute composition.

V. EXPERIMENTAL VALIDATION AND
APPLICATION

In the following, we scrutinize the applicability of pre-
vious findings to a set of well characterized, physiologi-
cal substances, i.e., bovine skim-milk powder (SM, Mil-
lipore 70166) and 20% intralipid emulsion (IL, Sigma-
Aldrich I141). To that aim, we measured the solute
concentration-dependent RI and MD with an Abbe re-
fractometer and a pycnometer, respectively. Both sam-
ples are particularly intriguing since they should exhibit
different ρ(δn) dependencies; SM mainly consists of lac-
tose and milk proteins, while IL is a stabilized emulsion
of soybean oil (see Fig. 2(b) for a reference).
According to the chemical certificate of analysis, pro-

vided by the manufacturers, the SM exhibits ySM1 =
4%w/w and the IL exhibits yIL1 = 76%w/w of water.
Hence, we computed the respective solute concentrations
as

cks =
mk(1− yk1)(

mw + yk1mk

)
/ρ1

, (43)

where mk denotes the mass of the sample (SM or IL) and
mw is the mass of water added to the sample. The results
of the measurements are shown in Figs. 3(a) and 3(b),
where each point represents N = 5 technical repetitions.
Using Eqs. (4) and (6) we fitted the data via a χ2-

minimization approach to obtain experimental values of
θeff and αeff with according uncertainties, respectively,
for both, SM, and IL. Examining the fitting residuals,
evidently, the RI contrast and MD scale linearly with the
solute concentration, justifying the assumption of volume
additivity.
We then employed the information about the chem-

ical composition of the respective substances, provided
by the manufacturers (see Tab. SI [25]), to compute the
correlative RI contrast and MD according to Eq. (23)
and the Biot RI mixing rule (Eq. (5)), employing MC
sampling. A graphical representation of the respective
RI increments and PSVs of all substances considered, as
well as the experimentally determined and predicted val-
ues of SM and IL is given in Fig. 3(c). The numerical
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(a) (b)

(c)

FIG. 2: Results of MC simulations and according analytical solutions for the mixture of human proteins and the
neutral lipid triolein in water; (a): Relative deviations of the MD ρ, the RI n, the effective RI increment αeff and
PSV θeff in dependence of the number of molecules per voxel N0 obtained from MC simulations (symbols) and
analytical solutions (dashed lines) for different mean relative lipid volume fractions xlip, associated deviations ∆xlip

and relative deviations of the number of the solute mass ∆ms/ms. The MC simulations were performed for a mean
water volume fraction of φ1 = 0.9 and Nv = 103. (b): MD ρ in g/ml in dependence of the RI contrast δn for
different mean relative lipid volume fractions xlip and mean water volume fractions ( φ1 = 0.1, φ1 = 0.3,
φ1 = 0.5, φ1 = 0.7, φ1 = 0.9) for ∆xlip = 0, N0 = 103 and Nv = 102. The dashed lines indicate the analytical
solutions of Eq. (23). (c): Correlative distribution of the MD ρ in g/ml and the RI contrast δn (the solid and dashed
lines indicate the 68.3% and 95.5% confidence contours) with the corresponding normalized marginal probability

density distributions M̂(ρ) and M̂(δn), respectively (the solid line represents the median, the dash-dotted and
dashed lines indicate the 68.3% and 95.5% confidence intervals), for the exact relative lipid volume fraction
xlip = 0.5 (purple) and the relative lipid volume fraction following a truncated normal distribution
xlip ∼ T (xlip = 0.5,∆xlip = 0.1) (cyan, see main text). The MC simulations were performed for a water volume
fraction following a truncated normal distribution φ1 ∼ T (φ1 = 0.9,∆φ1 = 0.1), N0 = 105 and Nv = 103.

values and respective references are stated in Tab. SI [25].
As becomes apparent, the measured and predicted values
of the SM and IL are in good agreement, while potential
uncertainties regarding the exact chemical composition

might be underappreciated here as we have no means of
estimating them.
Furthermore, matching the experimental concentra-

tions, we obtained a prediction of the MD in dependence

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.05.569868doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.05.569868
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

of the RI, which was found to coincide well with the mea-
surements for both SM, and IL, as shown in Fig. 3(d).

A. Larval zebrafish trunk tissue

Having delineated the good agreement between the as-
sumptions used to derive an expression of the MD in
dependence of the RI for two dilute, physiological sam-
ples, we now want to examine the capability of the pro-
posed model in an in vivo scenario. To that aim we
chose the larval zebrafish model system at 96 hours post-
fertilization (hpf), for which mass spectrometry (MS) and
RI data, employing ODT, of the trunk tissue were re-
cently obtained [19]. The RI data is given in Tab. SIII
[25]. As the MS data provides the protein content, we
are able to estimate the RI increment and PSV distribu-
tion of the proteins present in the tissue, as demonstrated
earlier, following Zhao et al. [23] (see Tab. I).
In the following, we assume that the larval zebrafish

trunk tissue primarily consists of mentioned proteins,
lipids and water, based on the findings of [40, 41]. The
lipid composition of zebrafish larvae was determined in
[41], from which we adapted the four phospholipid fatty
acids (PLFA) with the highest abundance. The respec-
tive relative volume fractions of the PLFAs for zebrafish
larvae at 96 hpf were roughly digitally obtained from [41]
and are provided in Tab. SI [25]. These four PLFAs make
up for about 72% of the total PLFA amount in the ze-
brafish larva. Additionally, based on [41], we assume that
the overall lipid composition of the tissue is only given
by triolein (TO) and said PLFAs.

Next, we inferred the distributions of the relative lipid
volume fraction xlip and the water volume fraction φ1

based on the measurements of [40] (see SI [25]). From
these initial estimations, employing Eq. (23), we ob-
tained the correlative RI and MD distribution, displayed
in Fig. 4(b), by MC sampling.

Evidently, both measured and predicted RI distribu-
tions do not coincide within one standard deviation. This
fact is not unexpected since the measurements of [40]
were done on whole animals, including the yolk sac which
is rich in lipids. Hence, the assumed relative volume frac-
tion of the lipids and the water volume fraction are likely
to be different from the trunk tissue. However, given the
deviations on the distributions of the relative lipid vol-
ume fraction and the water volume fraction, the result-
ing deviation of the predicted RI distribution matches
remarkably well with the deviation of the measured RI
distribution.

Hence, in an attempt to find the mean water volume
fraction φ1 and the mean relative lipid volume fraction
xlip that resembles the experimental condition, we eval-
uated the quantile comparison effect size (QCES, see
SI; Eq. (S11) [25]), as proposed in [42], denoted by Ξ,
between predicted and measured RI distributions for a
range of different φ1 and xlip, shown in Fig. 4(a). The

QCES provides an elegant way of comparing any two
distributions by means of the vertical quantile compar-
ison divergence. It is bounded on the domain [0, 1]; for
Ξ = 0 the two distributions are identical and for Ξ = 1,
they are maximally distinct. To give further intuition
on the QCES, we may consider two normal distributions
with mean values µ1 and µ2 and the standard deviations
σ1 = σ2 = σ. For the case of µ2 − µ1 = 1σ, which corre-
sponds to a Cohen’s d = 1, the QCES Ξ ≈ 0.52. Hence,
we consider any two distributions to be significantly dif-
ferent when Ξ > 0.52.
With this at our disposal, we obtain a region in the

φ1 −xlip plane that establishes concordance between the
predicted and measured RI distributions, as indicated by
the white dashed lines in Fig. 4(a). Evidently, the MD
is not well constrained by this set of parameters, since
combinations of φ1 and xlip for a wide range of values
result in the same RI, but drastically different MD dis-
tributions (see Fig. 4(b)). Consequently, minimizing the
QCES under the assumption that either the initial guess
of the water volume fraction or the initial guess of the
relative lipid volume fraction is adequate, one obtains in-
compatible MD estimates, as indicated by the cases ’xlip

adjusted’ and ’φ1 adjusted’ in Fig. 4(b). This fact con-
vincingly shows the ambiguity of estimations of the MD
given a measured RI distribution without correlative con-
straints on the (local) chemical composition of the sam-
ple. However, reconsidering that the measurements of
[40] were performed on whole animals, including the yolk
sac, the real relative lipid volume fraction of the trunk tis-
sue should be equal or lower than the ’initial guess’. This
in turn makes the case of ’φ1 adjusted’ our best guess,
yielding a MD estimate of ρB = (1.032± 0.004) g/ml.
We note that, as indicated in Fig. 4(a), when employ-

ing the Lorentz-Lorenz mixing rule of RIs (Eq. (13)) in-
stead of the Biot Eq. (5), the RI distribution obtained
by the ’initial guess’ is in good agreement with the mea-
sured RI distribution and we obtain an MD estimate for
the case of ’φ1 adjusted’ of ρLL = (1.034± 0.004) g/ml,
which is, considering the uncertainties, well compati-
ble with the estimate we obtained employing the Biot
Eq. (5). However, it is worth pointing out that the
Lorentz-Lorenz mixing rule did not agree well with the RI
measurements of the validation samples presented earlier.
In essence, at present, it is not clear which RI mixing

rule should be employed in this in vivo scenario, with-
out a more comprehensive understanding regarding the
biochemical composition of the sample. However, once
this insight becomes available, e.g., by measuring (S)RS,
different mixing rules could be compared to each other,
as presented earlier. This in turn would also allow to
study whether the ’best fitting’ RI mixing rule is con-
served across different specimen.
Finally, we want to point out that if we use the custom-

ary simplifying assumption that the solute composition
of the trunk tissue is only given by proteins, employing
Eq. (7), the RI increment and PSV given in Tab. I as
well as the measured RI data (Tab. SIII [25]), we obtain
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(a) (b)

(c) (d)

FIG. 3: Results of the concentration dependent measurements of the MD and RI of bovine skim-milk powder (SM)
and 20% intralipid emulsion (IL) in water as well as the theoretical predictions based on the chemical composition
using Eq. (23); (a): RI contrast δn in dependence of the solute concentration cs in g/ml of SM ( , N = 5 technical
repetitions) and IL ( , N = 5 technical repetitions) with the respective fits of Eq. (16) (solid lines) and fit residuals.
(b): MD ρ in g/ml in dependence of the solute concentration cs in g/ml of SM ( , N = 5 technical repetitions) and
IL ( , N = 5 technical repetitions) with the respective fits of Eq. (4) (solid lines) and fit residuals. (c): Effective RI
increment αeff in ml/g and PSV θeff in ml/g of various substances that compose SM and IL, as well as the measured
and predicted values for SM and IL. (d): MD ρ in g/ml in dependence of the RI contrast δn for different
concentrations of SM in water and IL. The symbols represent measured values (N = 5 technical repetitions) and the
predicted values using the Biot mixing rule (Eq. (5)) for N0 = 104 and Nv = 103. The dashed lines indicate Eq. (23)
for the predicted values of the effective RI increment and PSV.

ρp = (1.040± 0.004) g/ml, using GPU. Apparently, this
value does not coincide well with the values determined
above, ρB and ρLL. In fact, as outlined earlier, not taking
lipids into account results in a systematic overestimation
of the mass density of biological matter.

VI. DISCUSSION AND OUTLOOK

Considering the complexity of the chemical composi-
tion of biological matter in order to infer the ’optical’
MD, based on a RI measurement is not well established
in contemporary literature. Here we present a theoretical
macroscopic model that is capable of describing the prob-
lem, employing a minimal set of assumptions, namely the
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(a) (b)

FIG. 4: Results of MC simulations and according analytical solutions for the trunk tissue of larval zebrafish; (a):
Quantile comparison effect size (QCES) Ξ between the RI distribution of larval zebrafish trunk tissue measured in
[19] and the predictive RI distributions obtained from MC simulations of Eq. (23) using the Biot mixing rule (left,
Eq. (5)) and the Lorentz-Lorenz mixing rule (right, Eq. (13)) for different mean water volume fractions φ1 and mean
relative lipid volume fraction xlip. The symbols indicate : the initial guess, based on the measurements of [40], :
the local minimum of Ξ for the relative lipid volume fraction of the initial guess and : the local minimum of Ξ for
the water volume fraction of the initial guess. The white dashed lines indicate a 1 σ deviation of the predicted RI
distribution to the measured RI distribution. All MC simulations were performed for N0 = 103 and Nv = 103. (b):
Predicted correlative distributions of the MD ρ in g/ml and the RI contrast δn of larval zebrafish trunk tissue with

the corresponding normalized marginal probability density distributions M̂(ρ) and M̂(δn), respectively (the solid
line represents the median, the dash-dotted and dashed lines indicate the 68.3% and 95.5% confidence intervals).
The ellipsoids indicate the different cases shown in Fig. (a): the initial guess (blue), φ1 adjusted (orange) and xlip

adjusted (red) with the corresponding analytical predictions for the different relative lipid volume fractions and
varying water volume fraction. The green band indicates the RI measurement of [19]. The MC simulations were
performed for N0 = 105 and Nv = 103.

Biot mixing rule of RIs and the assumption of volume ad-
ditivity.

We evaluated the possible sources of uncertainties as-
sociated with the model and showed that based on the
chemical composition of the sample and the associated
degree of inhomogeneity, the resulting RI and MD distri-
butions might drastically differ from the customary as-
sumption of biological matter consisting of proteins and
water only. For that purpose, we provided analytical so-
lutions as well as consistent simulation results for the case
of a binary solute, composed of proteins and lipids.

While it is shown that for singular proteins in solution
the assumption of volume additivity might not be justi-
fied [43] (see SI [25]), we provided experimental evidence
that, for the set of validation samples under investigation,
i.e., bovine skim-milk powder and 20% intralipid emul-
sion, it holds well within the measurement uncertainties.

Further, we provided evidence that the predictions of
the correlative MD and RI based on our model agree with
the experimentally obtained values of the validation sam-
ples, thus establishing confidence in the application of the

theoretical considerations presented here to estimate MD
in dependence of the RI, given the chemical composition
of the sample under study.
When applying the model to an in vivo specimen, i.e.,

the trunk tissue of the larval zebrafish, we observed that
the mean value of RI measurements of [19] does not co-
incide within one standard deviation of our predictions,
based on the estimations of the chemical composition of
the tissue, employing the measurements of [40], where
the authors determined the masses of water, proteins and
lipids of whole animals. However, our initial predictions
are remarkably close to the measurements, given the mul-
titude of assumptions and simplifications employed.
We then explored the possibility of adjusting the hypo-

thetical protein to lipid ratio and the water content of lar-
val zebrafish trunk tissue in order to establish agreement
between the measured and predicted RI distributions. To
that aim we visited the topic of distribution comparisons.
Employing the quantile comparison effect size, proposed
in [42], we found a range of possible combinations of rel-
ative lipid volume fractions and water volume fractions
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for which the predicted RI distribution coincides with
the measured one. However, for these inferred ranges,
the MD varies significantly, resulting in large deviations.
In order to resolve this problem, complementary (S)RS
measurements would be necessary. With the information
about the local concentrations of proteins and lipids in
the trunk tissue, obtained by such (S)RS measurements,
the predictive capability of our model would be signifi-
cantly increased [20, 21].

Going forward, the estimation of the MD of biological
matter from RI measurements, as outlined in this study,
will have interesting implications for inferring the me-
chanical properties from opto-acoustical measurements,
e.g., via Brillouin microscopy. The problem of a varying
solute composition within a sample is well appreciated
(see e.g., [12]), but not resolved in a cohesive manner.
Evidently, combining Brillouin microscopy not only with
ODT, but also incorporating the local biochemical com-
position (e.g., via (S)RS measurements) allows for a bet-
ter estimation of the longitudinal (elastic) modulus. We
note that the aforementioned problem could also be re-
solved by performing stimulated Brillouin microscopy in
combination with ODT. Here, the MD can be obtained
directly from measurements of the Brillouin resonance
gain factor, which in turn is connected to the Brillouin
gain and the pump laser power, as well as the RI, Bril-
louin frequency shift and Brillouin line width [44]. Accu-
rately determining the local (in vivo) MD, will conceiv-
ably enable a more profound interpretation of functional
mechanisms at play in biological matter.

The possibility of linking the MD estimates of a sample
with the inherent dynamics of the system, i.e., the statis-
tical processes, poses an intriguing endeavor. Moreover,
explorations of the predictive RI and MD distributions of
cells, in particular Xenopus egg extract, i.e., cytoplasm,
for which the chemical composition could be accurately
determined, will be insightful for inferences regarding the
applicability and predictive capability of our model.

Finally, describing the problem of MD estimations,
given uncertain a priori assumptions, in a Bayesian
framework should be investigated.

In order to make the application of the findings of this
study more accessible, we delineate strategies on how to
estimate MD, given certain experimental paradigms, in
the supplemental information [25].

VII. MATERIALS AND METHODS

A. Sample preparation

The skim-milk powder was dissolved in distilled wa-
ter while carefully stirring the solution to avoid foam-
ing. The solution was then left on a tilt/roller mixer for
approximately 30 minutes. For the intralipid emulsion,
according amounts of water were added to the emulsion

and the solution was left on a tilt/roller mixer for ap-
proximately 30 minutes, as well. All samples were freshly
prepared before the measurements were performed.

B. Abbe refractometry and pycnometry

For measuring the refractive index of a liquid sample,
100 µl of the sample were loaded into an Abbe refrac-
tometer (KERN ORT 1RS) and a commercially available
flashlight LED was employed as illumination source.
To determine the density of a liquid sample, a pyc-

nometer (Blaubrand 43305) was employed. First, the
volume of the pycnometer was determined by employing
distilled water as a calibration sample (N = 10 technical
repetitions) as

vpyc =
mw −mpyc

ρw,lit.
= (4.9455± 0.0017) ml, (44)

wheremw is the mass of the pycnometer filled with water,
mpyc is the mass of the empty pycnometer and ρw,lit. =
0.997g/ml is the literature value of the density of water at
23◦C. The respective masses were measured using a high
precision lab scale (Ohaus Pioneer PX124). The density
of the liquid sample under study was then computed by

ρ =
m−mpyc

vpyc
. (45)

C. Measurement uncertainties

The systematic uncertainties of the respective mea-
surement devices under use were taken from the manuals
and considered in all calculations together with the sta-
tistical uncertainties by employing Gaussian propagation
of uncertainty as

∆z =
√
∆z2sys +∆z2stat, (46)

where z is an arbitrary observable.

D. Data analysis

All data analysis, plotting and simulations were per-
formed using custom scripts in Wolfram Research,
Inc., Mathematica, Version 12.2 [45].
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